首页> 外文OA文献 >Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas
【2h】

Astrophysical gyrokinetics: kinetic and fluid turbulent cascades in magnetized weakly collisional plasmas

机译:天体物理陀螺动力学:动力学和流体湍流级联   磁化的弱碰撞等离子体

摘要

We present a theoretical framework for plasma turbulence in astrophysicalplasmas (solar wind, interstellar medium, galaxy clusters, accretion disks).The key assumptions are that the turbulence is anisotropic with respect to themean magnetic field and frequencies are low compared to the ion cyclotronfrequency. The energy injected at the outer scale scale has to be convertedinto heat, which ultimately cannot be done without collisions. A KINETICCASCADE develops that brings the energy to collisional scales both in space andvelocity. Its nature depends on the physics of plasma fluctuations. In each ofthe physically distinct scale ranges, the kinetic problem is systematicallyreduced to a more tractable set of equations. In the "inertial range" above theion gyroscale, the kinetic cascade splits into a cascade of Alfvenicfluctuations, which are governed by the RMHD equations at both the collisionaland collisionless scales, and a passive cascade of compressive fluctuations,which obey a linear kinetic equation along the moving field lines associatedwith the Alfvenic component. In the "dissipation range" between the ion andelectron gyroscales, there are again two cascades: the kinetic-Alfven-wave(KAW) cascade governed by two fluid-like Electron RMHD equations and a passivephase-space cascade of ion entropy fluctuations. The latter cascade brings theenergy of the inertial-range fluctuations that was damped by collisionlesswave-particle interaction at the ion gyroscale to collisional scales in thephase space and leads to ion heating. The KAW energy is similarly damped at theelectron gyroscale and converted into electron heat. Kolmogorov-style scalingrelations are derived for these cascades. Astrophysical and space-physicalapplications are discussed in detail.
机译:我们为天体物理学中的等离子体(太阳风,星际介质,星系团,吸积盘)提供了一种理论湍流的理论框架,主要假设是该湍流相对于主旋磁场是各向异性的,并且其频率与离子回旋频率相比较低。必须将在外部刻度尺上注入的能量转换为热量,而最终如果没有碰撞就无法完成。 KINETICCASCADE的开发使能量在空间和速度上都达到了碰撞标度。其性质取决于等离子体波动的物理性质。在每个物理上不同的比例范围内,系统地将动力学问题简化为更易于处理的方程组。在陀螺仪刻度的“惯性范围”内,动力学级联分裂成Alfvenic涨落的级联,这两个级联由在碰撞领域无碰撞级的RMHD方程和压缩涨落的被动级联控制,该级联遵循沿线的线性动力学方程。与Alfvenic组件关联的运动场线。在离子和电子陀螺之间的“耗散范围”中,又有两个级联:由两个类似流体的电子RMHD方程控制的动力学Alfven-wave(KAW)级联和离子熵涨落的无源相空间级联。后者的级联将惯性范围波动的能量(由于在离子陀螺仪上的无碰撞波粒相互作用而衰减)带到相空间中的碰撞标尺,并导致离子加热。 KAW能量同样在电子陀螺仪上衰减,并转换为电子热。对于这些级联,得出了Kolmogorov风格的比例关系。详细讨论了天体物理和空间物理应用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号